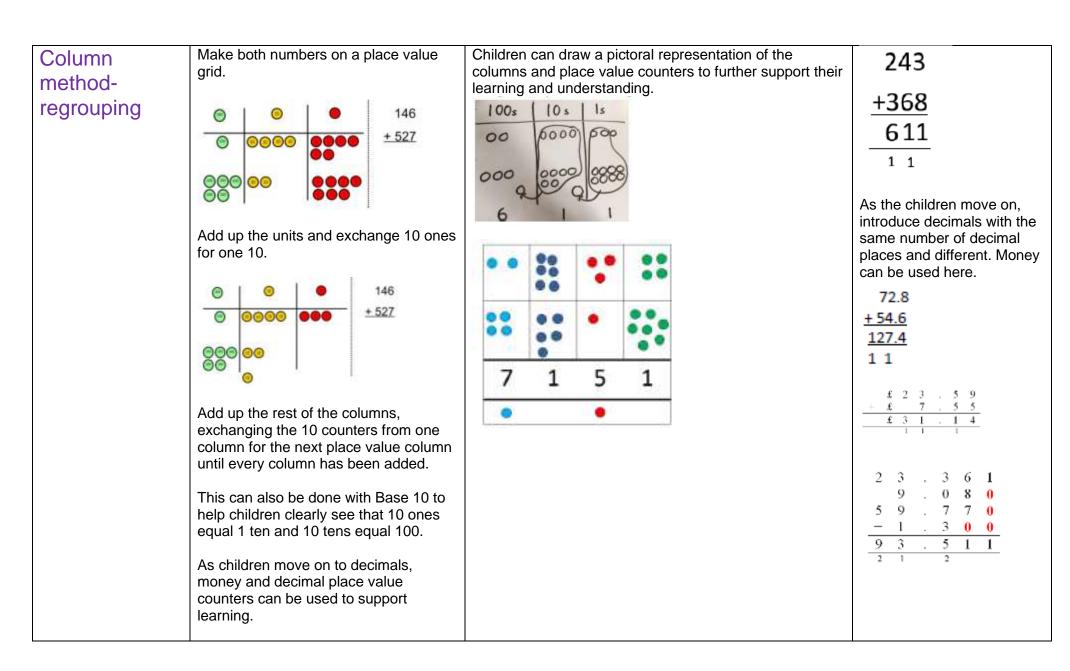


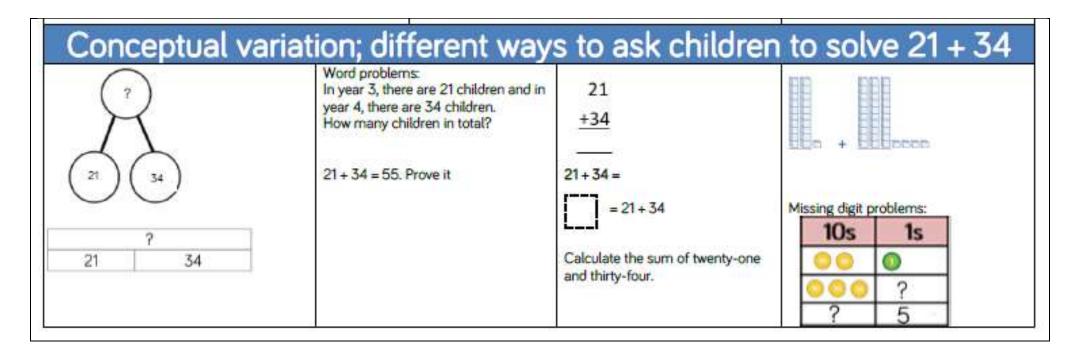
Calculation Policy September 2023

At Cecil Road Primary and Nursery School, we have developed a consistent approach to the teaching of written calculation methods in order to establish continuity and progression through the school. This policy has been adapted from the White Rose Maths Hub to be in line with our schemes of learning.

This calculation policy outlines the progression in mathematical strategies and skills from Early Years to Year 6, and the typical year group children will be in when they are first introduced to particular concepts. However, it is expected that teachers will use their professional judgement as to when consolidation of existing skills is required or if to move onto the next concept. However, the focus must always remain on breadth and depth rather than accelerating through concepts. Children should not be extended with new learning before they are ready, they should deepen their conceptual understanding by tackling challenging and varied problems.

The National Curriculum is explicit in articulating the importance of children using the correct mathematical language as a central part of their learning and reasoning. It is therefore essential that teaching using the strategies outlined in this policy is accompanied by the use of appropriate and precise mathematical vocabulary. New vocabulary should be introduced in a suitable context and explained carefully using relevant objects, manipulatives, pictures or diagrams. High expectations of the mathematical language used are essential.

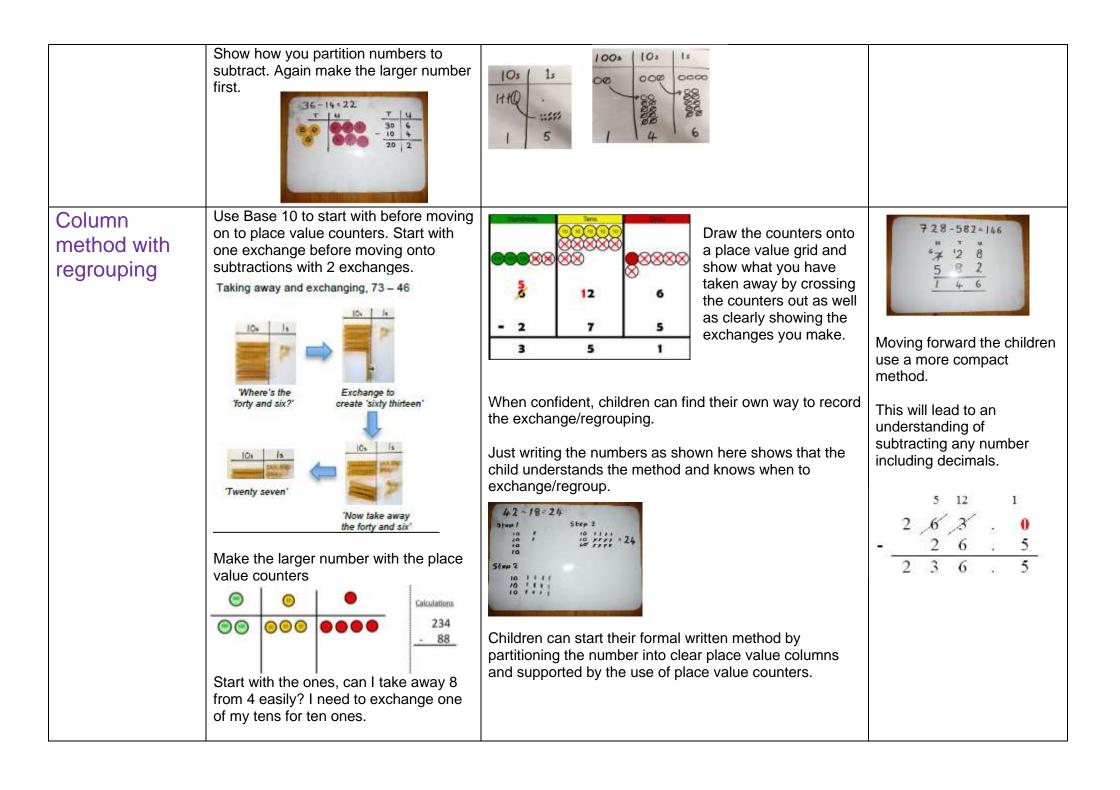

It is expected that visual images and manipulates are used alongside the teaching of each stage. Teachers can use any teaching resources that they wish to use and the policy does not recommend one set of resources over another, instead, a variety of resources are used. For each of the four operations of number, different strategies are laid out, together with examples of what concrete materials can be used and how, along with suggested pictorial representations. The principle of the concrete-pictorial-abstract (CPA) approach s for children to have a true understanding of a mathematical concept. They need to master all three phases within each year group's scheme of work.

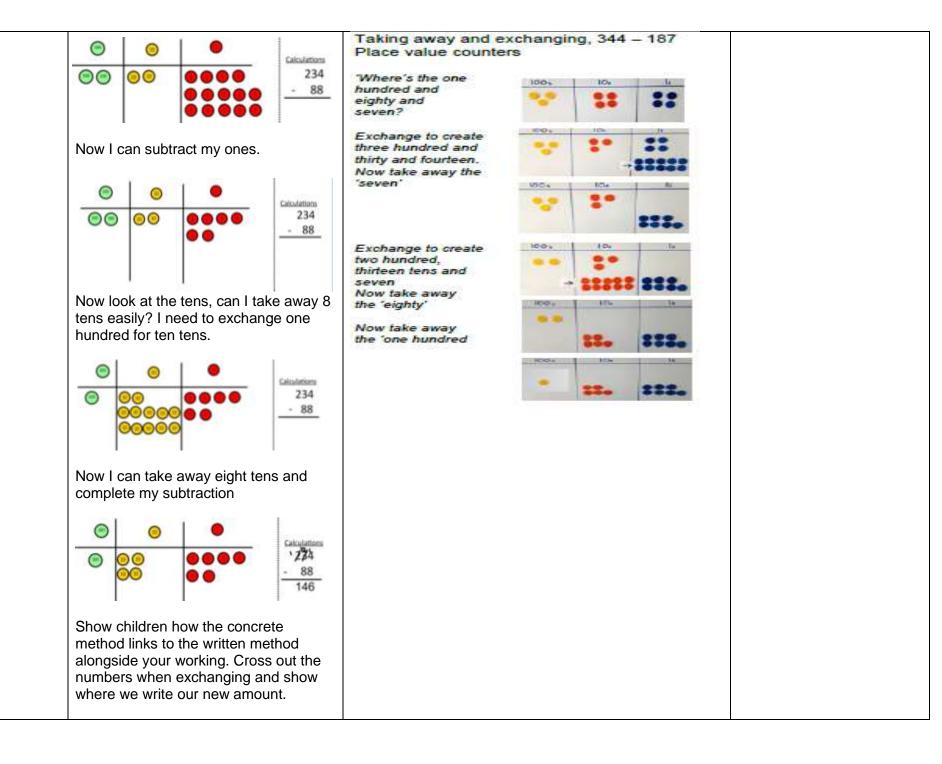

We aim for all children to be able to use a reliable and efficient written method for each operation with confidence and understanding by Upper Key Stage 2. Children will be encouraged to consider the calculation and the most efficient method to reach the answer.

Addition

Objective and Strategies	Concrete	Pictorial	Abstract
Combining two parts to make a whole: part- whole model	Use objects to add two numbers together as a group or in a bar.	Image: space of the state	4 + 3 = 7 10= 6 + 4 5 3 Use the part-part whole diagram as shown above to move into the abstract.
Starting at the bigger number and counting on	Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer.	12 + 5 = 17 $(+ + + + + + + + + + + + + + + + + + +$	5 + 12 = 17 Place the larger number in your head and count on the smaller number to find your answer.

Regrouping to make 10.	6 + 5 = 11 Start with the bigger number and use the smaller number to make 10.	Children to draw the ten frame and counters/cubes.	Children to develop an understanding of equality e.g. $6 + \Box = 11$ $6 + 5 = 5 + \Box$ $6 + 5 = \Box + 4$
Adding three single digits	 4 + 7 + 6= 17 Put 4 and 6 together to make 10. Add on 7. Following on from making 10, make 10 with 2 of the digits (if possible) then add on the third digit. 	Add together three groups of objects. Draw a picture to recombine the groups to make 10.	4 + 7 + 6 = 10 + 7 $= 17$ Combine the two numbers that make 10 and then add on the remainder.
Column method- no regrouping	24 + 15= Add together the ones first then add the tens. Use the Base 10 blocks first before moving onto place value counters.	After practically using the base10 blocks and place value counters, children can draw the counters to help them to solve additions.	$\frac{Calculations}{21 + 42} = \frac{21}{42}$




Subtraction

Objective and Strategies	Concrete	Pictorial	Abstract
Taking away ones	Use physical objects, counters, cubes etc to show how objects can be taken away. 6-2=4	Cross out drawn objects to show what has been taken away. $\begin{array}{c} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\$	18 - 3 = 15 8 - 2 = 6

Counting back	Make the larger number in your subtraction. Move the beads along your bead string as you count backwards in ones. 13 – 4 Use counters and move them away from the group as you take them away counting backwards as you go.	Count back on a number line or number track 9 10 11 12 13 14 15 Start at the bigger number and count back the smaller number showing the jumps on the number line. -10 - 10 - 10 - 10 - 10 - 10 - 10 - 10	Put 13 in your head, count back 4. What number are you at? Use your fingers to help.
Find the difference	Compare amounts and objects to find the difference. Image: Compare amounts and objects to find the difference. Image: Compare amounts and objects to find the difference. Image: Compare amounts and objects to find the difference. Image: Compare amounts and objects to find the difference. Image: Compare amounts and objects to find the difference. Image: Compare amounts and objects to find the difference. Image: Compare amounts and objects to find the difference. Image: Compare amounts amounts and objects to find the difference.	This can progress all the way to counting back using two 2 digit numbers. Count on to find the difference.	Hannah has 23 sandwiches, Helen has 15 sandwiches. Find the difference between the number of sandwiches.

Part Part Whole Model	Link to addition- use the part whole model to help explain the inverse between addition and subtraction. If 10 is the whole and 6 is one of the parts. What is the other part? 10 - 6 =	Use a pictorial representation of objects to show the part part whole model.	Move to using numbers within the part whole model.
Make 10	14 – 9 = Make 14 on the ten frame. Take away the four first to make 10 and then takeaway one more so you have taken away 5. You are left with the answer of 9.	13 - 7 = 6 3 4 5 + 2 + 3 + 4 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5	16 – 8= How many do we take off to reach the next 10? How many do we have left to take off?
Column method without regrouping	Use Base 10 to make the bigger number then take the smaller number away.	Draw the Base 10 or place value counters alongside the written calculation to help to show working.	This will lead to a clear written column subtraction. $ \begin{array}{r} 32 \\ -12 \\ 234 \\ - 88 \\ -6 \\ \end{array} $

		Raj spent £391, Timmy spent £186. How much more did Raj spend? Calculate the difference between 391 and 186.	= 391 - 186 391 - <u>186</u>	Missing digit calculations
391			What is 186 less than 391?	0 5
186	?			Decomposition (2012)

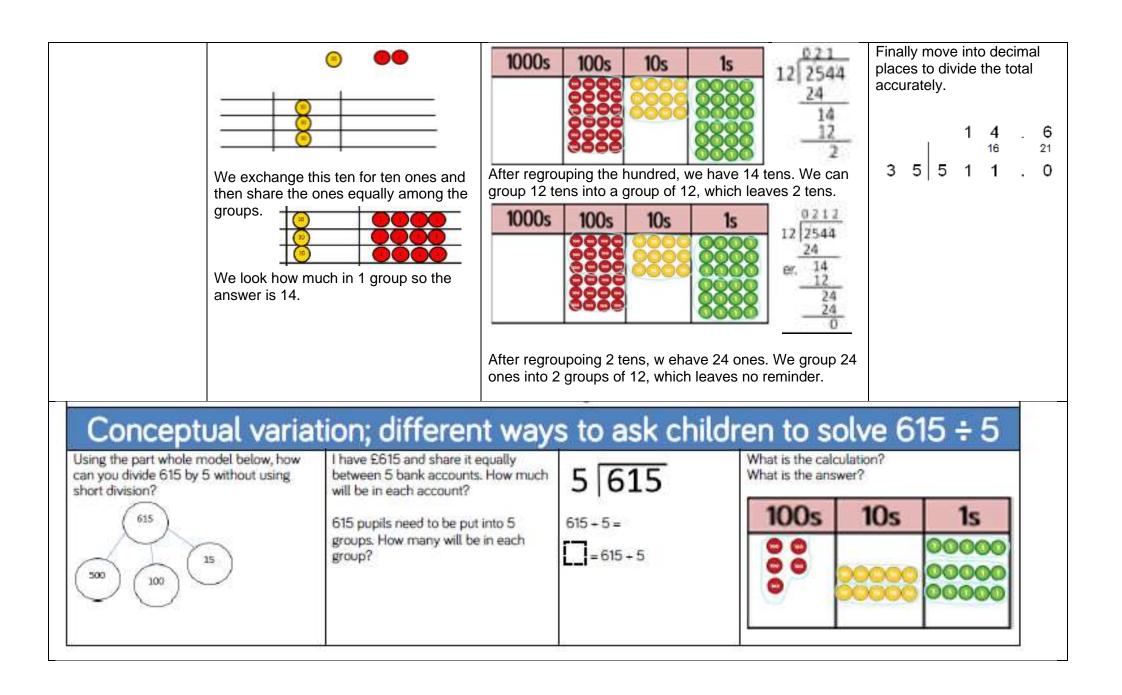
Multiplication

Objective and Strategies	Concrete	Pictorial	Abstract
Doubling	Use practical activities to show how to double a number.	Draw pictures to show how to double a number. Double 4 is 8	$\begin{array}{c} 16 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\$

Counting in multiples	Count in multiples supported by concrete objects in equal groups.	Use a number line or pictures to continue support in counting in multiples.	Count in multiples of a number aloud. Write sequences with multiples of numbers. 2, 4, 6, 8, 10 5, 10, 15, 20, 25, 30
Repeated addition	Use different objects to add equal groups.	There are 3 plates. Each plate has 2 star biscuits on. How many biscuits are there? 2 add 2 add 2 equals 6 5 + 5 + 5 = 15 5 + 5 + 5 = 15	Write addition sentences to describe objects and pictures.
Arrays- showing commutative multiplication	Create arrays using counters/ cubes to show multiplication sentences.	Draw arrays in different rotations to find commutative multiplication sentences.	Use an array to write multiplication sentences and reinforce repeated addition.

		Link arrays to area of rectangles. These can be drawn pictorially to represent the manipulatives used.	5+5+5=15 3+3+3+3+3=15 $5 \times 3 = 15$ $3 \times 5 = 15$
Column multiplication	Children can continue to be supported by place value counters at the stage of multiplication.	Bar modelling and number lines can support learners when solving problems with multiplication alongside the formal written methods $5\pi 59 59 59 59 59 59 59 59 59 59 59 59 59 $	Start with long multiplication, reminding the children about lining up their numbers clearly in columns. Formal written method $6 \times 23 =$ 23 $\frac{\times 6}{138}$ $\frac{1}{11}$ If it helps, children can write out what they are solving next to their answer.

Formal column method with place value counters. 6 x 23 100s 10s 1s 000 000 000 0000 000 000 000 000 00000 00000 0000 0000 0000 0000 0000 0000 0000 00	Children to represent the counters/base 10, pictorially e.g. the image below.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
		1342 x 18 13420 13420 10736 24156


23 23 23 23 23 23	Mai had to swim 23 lengths, 6 times a week.	Find the product of 6 and 23	What is the ca What is the pr		
	How many lengths did she swim in one week?	6×23=	100s	10s	1s
5	With the counters, prove that 6 x 23 = 138	6 23 × <u>23</u> × 6		0000	000

Division

Objective and Strategies	Concrete	Pictorial	Abstract
Sharing objects into groups	I have 10 cubes, can you share them equally in 2 groups?	Children use pictures or shapes to share quantities. Children use pictures or shapes to share quantities. 323	Share 9 buns between three people. $9 \div 3 = 3$

Division as grouping	Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding.	Use a number line to show jumps in groups. The number of jumps equals the number of groups. 0 1 2 3 4 5 6 7 8 9 10 11 12 	28 ÷ 7 = 4 Divide 28 into 7 groups. How many are in each group?
Division within arrays	Link division to multiplication by creating an array and thinking about the number sentences that can be created. Eg $15 \div 3 = 5$ $5 \times 3 = 15$ $15 \div 5 = 3$ $3 \times 5 = 15$	Image: Constraint of the strate of the st	Find the inverse of multiplication and division sentences by creating four linking number sentences. $7 \times 4 = 28$ $4 \times 7 = 28$ $28 \div 7 = 4$ $28 \div 4 = 7$

Division with a remainder	14 ÷ 3 = Divide objects between groups and see how much is left over	Jump forward in equal jumps on a number line then see how many more you need to jump to find a remainder.	Complete written divisions and show the remainder using r. $29 \div 8 = 3$ REMAINDER 5 $\uparrow \uparrow \uparrow \uparrow$ dividend divisor quotient remainder
Short division	Tens Units 3 2 3 0 3 0 3 0	Pupils continue to use drawn with dots or circles to help them represent the place value couters to show how to divide numbers into equal groups.	Begin with divisions that divide equally with no remainder. 2 1 8
	Use place value counters to divide using the bus stop method alongside	0 0000 0 0000 0 0000	4 8 7 2 Move onto divisions with a remainder.
	42 ÷ 3= Start with the biggest place value, we are sharing 40 into three groups. We can put 1 ten in each group and we have 1 ten left over.	Introduce long division to show all the steps and to ensure the children understand the value of each digit. Use place value counters to support this.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

